Enumeration formulas for generalized q-Euler numbers

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combinatorics of generalized q-Euler numbers

New enumerating functions for the Euler numbers are considered. Several of the relevant generating functions appear in connection to entries in Ramanujan’s Lost Notebook. The results presented here are, in part, a response to a conjecture made by M. E. H. Ismail and C. Zhang about the symmetry of polynomials in Ramanujan’s expansion for a generalization of the Rogers-Ramanujan series. Related g...

متن کامل

Explicit Formulas Involving q-Euler Numbers and Polynomials

and Applied Analysis 3 Similarly, the q-Bernoulli polynomials and numbers with weight 0 are defined, respectively, as B̃n,q x lim n→∞ 1 [ pn ] q pn−1 ∑ y 0 ( x y )n q

متن کامل

Explicit Formulas for Bernoulli and Euler Numbers

Explicit and recursive formulas for Bernoulli and Euler numbers are derived from the Faá di Bruno formula for the higher derivatives of a composite function. Along the way we prove a result about composite generating functions which can be systematically used to derive such identities.

متن کامل

Compact Enumeration Formulas for Generalized Partitions

Counting the number of elements in finite sets Si (where i typically ranges over some index set I such as the non–negative integers or a cartesian product of the non–negative integers) is surely one of the oldest and most fundamental problems in mathematics. It is in the nature of the subject that only a few enumeration problems have a compact solution in terms of a simple explicit formula in i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Applied Mathematics

سال: 2012

ISSN: 0196-8858

DOI: 10.1016/j.aam.2012.07.001